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Power-law relaxation in a complex system: Omori law after a financial market crash
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We study the relaxation dynamics of a financial market just after the occurrence of a crash by investigating
the number of times the absolute value of an index return is exceeding a given threshold value. We show that
the empirical observation of a power law evolution of the number of events exceeding the selected threshold
~a behavior known as the Omori law in geophysics! is consistent with the simultaneous occurrence of~i! a
return probability density function characterized by a power law asymptotic behavior and~ii ! a power-law
relaxation decay of its typical scale. Our empirical observation cannot be explained within the framework of
simple and widespread stochastic volatility models.
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Several complex systems are statistically characterize
power-law distributions. Examples are earthquakes, finan
markets, landslides, forest fires, and scale free netwo
Power-law distributions imply that rare events are occurr
with a finite non-negligible probability in complex system
It is therefore meaningful to ask the following scientifi
question: how is the dynamics of a complex system affec
when the system undergoes to an extreme event? An an
to this question concerning earthquakes was provided
Omori more than a century ago@1#. The Omori law describes
the nonstationary period observed after a big earthquake
his study, the number of aftershocks per unit of time is
scribed by a power law, and a time scale for the relaxat
process of the complex system to its typical state does
exist. Nonexponential relaxation to a typical state has a
been observed in several physical and social systems.
example, power-law relaxation has been theoretically p
dicted and experimentally observed in spin glasses@2#, con-
densed matter systems@3#, microfracturing phenomena@4#,
physical systems described by a fractional Fokker-Pla
equation@5#, in the kinetics of reversible bimolecular rea
tions @6#, in two-dimensional arrays of magnetic dots inte
acting by long-range dipole-dipole interactions@7#, in
the Internet dynamical response@8#, and in the Internet
traffic @9#.

In the present study, we investigate the dynamics o
model complex system when it is moved far away from
typical state by the occurrence of an extreme event. Thi
done by investigating the statistical properties of time se
of financial indices in the time period immediately after
financial crash. These market phases are indeed stro
nonstationary and we show that a time power-law relaxa
is detected when the financial market is moved far aw
from its typical behavior.

Financial time series of stock or index returns is mode
in terms of random processes@10,11#. Empirical investiga-
tions show that the time series of stock or index return is
strictly sense stationary. In fact, the volatility of the financ
asset, i.e., the standard deviation of asset returns descr
the typical scale of the process, is itself a stochastic proc
fluctuating in time@12,13#. The nonstationary evolution o
asset returns can sometimes show relaxation time patte
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Specifically, decaying patterns of volatility are observed
time periods immediately after a financial crash. An illustr
tive example of such a nonstationary time pattern is given
Fig. 1 where we plot the 1-min logarithm changes of t
indexr (t) ~a quantity essentially equivalent to return! for the
Standard and Poor’s 500~S&P500! index during 100 trading
days after the Black Monday~19 October 1987!. The pattern
observed in Fig. 1 is not invariant under time reversal. Ot
examples of statistical properties of market, which are
time reversal, have been observed in the investigation
cross-sectional quantities computed for a set of stocks be
and after financial crashes@14#.

A direct characterization of the time evolution of the sca
of the random process of return is extremely difficult in
nancial markets and in several other complex systems du
the fact that the random variable is highly fluctuating a
that system is unavoidably monitored by just recording
single random realization. We make use of a different a
statistically more robust method. Specifically, we quanti
tively characterize the time series of index returns in
nonstationary time period by investigating the number
timesur (t)u is exceeding a given threshold value. This inve
tigation is analogous to the investigation of the numbern(t)

FIG. 1. 1-min change of the natural logarithm of the Stand
and Poor’s 500 index during the 100 trading day time period
mediately after the Black Monday financial crash~20 October
1987–11 March 1998!. A decrease of the typical scale of the st
chastic process~volatility in the financial literature! is manifest
making the stochastic process nonstationary.
©2003 The American Physical Society19-1
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of aftershock earthquakes measured at timet after the main
earthquake. The Omori lawn(t)}t2p says that the numbe
of aftershock earthquakes per unit time measured at timt
after the main earthquake decays as a power law. In orde
avoid divergence att50, the Omori law is often rewritten a

n~ t !5K~ t1t!2p, ~1!

where K and t are two positive constants. An equivale
formulation of the Omori law more suitable for comparis
with real data can be obtained by integrating Eq.~1! between
0 and t. In this way the cumulative number of aftershoc
observed until timet after the main earthquake is

N~ t !5K@~ t1t!12p2t12p#/~12p!, ~2!

when pÞ1 andN(t)5K ln(t/t11) for p51. The value of
the exponentp for earthquakes ranges between 0.9 and 1
BecauseN(t) is related ton(t) by a summation, the fluctua
tion in N(t) is substantially reduced compared to the fluctu
tion in n(t). Hence, customary measurement ofN(t) leads to
a more reliable characterization of the aftershock period t
measurement ofn(t).

We first investigate the index returns during the time p
riod after the Black Monday crash occurred at New Yo
Stock Exchange~NYSE!. This crash was one of the wors
crashes occurred in the entire history of NYSE. The S&P5
went down 20.4% that day. In our investigation, we selec
60 day after crash time period ranging from 20 October 19

FIG. 2. Cumulative numberN(t) of the number of timesur (t)u
is exceeding a threshold, during the 60 trading days immediate
after the Black Monday financial crash. From top to bottom
show the curves for values of, equal to 4s, 5s, 6s, and 7s,
respectively. The parameters is the standard deviation of the pro
cessr (t) computed over the entire investigated period. The das
lines are best fits of Eq.~2!.
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to 14 January 1988. This time period is chosen to maxim
the time period investigated by simultaneously ensuring t
the relaxation process is still going on. The selected valu
not a critical one and time windows of 50 or 70 trading da
provide similar results. For the selected time period, we
vestigate the 1-min return time series of the S&P500 ind
The first estimate concerns the unconditional 1-min volati
which is equal tos54.9131024. In Fig. 2, we show the
cumulative number of eventsN(t) detected by considering
all the occurrences observed when the absolute value o
dex return exceeds a threshold value, chosen as 4s, 5s,
6s, and 7s. For all the selected threshold values, we o
serve a nonlinear behavior. Nonlinear fits performed with
functional form of Eq.~2! well describes the empirical dat
for the entire time period. This paradigmatic behavior is n
specific of the Black Monday crash of the S&P 500 index.
fact, we observe similar results also for a stock price ind
weighted by market capitalization for the time periods occ
ring after the 27 October 1997 and the 31 August 1998 st
market crashes. This index has been computed by selec
the 30 most capitalized stocks traded in the NYSE and
using the high-frequency data of theTrade and Quotedata-
base issued by the NYSE. In Fig. 3, we showN(t) for ,
54s, 5s, 6s, and 7s, wheres is again the unconditiona
1-min volatility in the considered periods. We estimates
54.5431024 during the period from 28 October 1997 to 2
January 1998, ands56.0931024 during the period from 1
September 1998 to 24 November 1998. In the left part

d

FIG. 3. Cumulative numberN(t) of the number of timesur (t)u
is exceeding the threshold, during the 60 trading days immediatel
after ~a! the 27 October 1997 and~b! the 31 August 1998 financia
crashes. In both panels, from top to bottom, we show the curves
values of, equal to 4s, 5s, 6s, and 7s, respectively. The pa-
rameters is the standard deviation of the processr (t) computed
over the entire investigated period. The dashed lines are best fi
Eq. ~2!.
October
TABLE I. Exponents obtained from the empirical analyses of 60 day market periods occurring after the 19 October 1987, 27
1997, and 31 August 1998 market crashes.

p a b ab
4s 5s 6s 7s

1987 0.85 0.90 0.99 0.99 3.1860.34 0.3260.02 1.0260.13
1997 0.70 0.73 0.73 0.76 3.6760.40 0.2260.04 0.8160.17
1998 0.99 0.99 0.99 0.99 3.4960.37 0.3260.05 1.1260.21
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Table I, we summarize the values of thep exponents ob-
tained by best fitting with Eq.~2! the cumulative number o
events exceeding the selected threshold values for the
sidered market crashes. The value of the exponentp varies in
the interval between 0.70 and 0.99. The estimate of the
ponentp is slightly increasing when the threshold value, is
increasing. Below, we will comment on the relation betwe
this observation and the properties of the index return pr
ability density function~pdf!. The detected nonlinear beha
ior of N(t) is specific to aftercrash market period. In fact,
approximately linear behavior ofN(t) is observed when a
market period of roughly constant volatility, for example, t
1984 year is investigated. This is due to the fact that wh
the process is stationary, the frequencyn(t) of aftershock is,
on an average, constant in time and therefore the cumula
numberN(t) increases linearly in time. In terms of Eq.~2!,
this implies that the exponentp is equal to zero. For inde
pendent identically distributed random time series, it is p
sible to characterizen(t) in terms of an homogeneous Poi
son process@15#. The results summarized in the left part
Table I imply that the time period immediately after a b
market crash has statistical properties which are differ
from constant volatility periods. In particular, index retu
cannot be modeled in terms of independent identically d
tributed random process after a big market crash.

The empirical evidence of the power-law decrease of
frequency of aftershocks is consistent with a power-law
cay of volatility after a major crash. In order to prove th
claim, we describe the empirical behavior ofN(t) by assum-
ing that during the time period after a big crash, the stoch
tic variabler (t) is the product of a time dependent scaleg(t)
and a stationary stochastic processr s(t). For the sake of
simplicity, we also assume that the pdf ofr (t) is approxi-
mately symmetrical. Under these assumptions, the freque
of events ofur (t)u larger than, observed at timet is

n~ t !}2E
,

1`

f ~r ,t !dr, ~3!

wheref (r ,t) is the pdf ofr (t) at timet. One can rewrite Eq
~3! in terms of the cumulative distribution functionFs(r s) of
the random variabler s(t) as

n~ t !}12Fs„,/g~ t !…. ~4!

In this description, the specific form of the time evolutio
of n(t) is, for large values of the threshold,, controlled by
the properties of~i! the time evolution of the scaleg(t) and
~ii ! the asymptotic behavior of the pdf for large valu
of ur s(t)u.

By assuming that the stationary return pdf beha
asymptotically as a power law

f s~r s!;
1

r s
a11

, ~5!

the frequencyn(t) of events becomes for large values of,

n~ t !;@g~ t !/,#a. ~6!
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By hypothesizing thatg(t);exp(2kt), the frequency of
events above threshold is expected to be exponentially
creasing:n(t);exp(2akt). Conversely, when the scale o
the stochastic process decays as a power lawg(t);t2b, the
frequency of events above threshold is power-law decay
asn(t);1/tp. It is worth noting that the exponentp is given
by

p5ab. ~7!

The previous relation links the exponentp governing the
number of events exceeding a given threshold to thea ex-
ponent of the power-law return cumulative distribution a
to the b exponent of the power-law decaying scale. It
worth noting that a power-law behavior of the return pdf
observed only for large absolute values of returns. Hence,
relation between exponents@Eq. ~7!# is valid only for large
values of the threshold, used to determine the exponentp.
Our theoretical considerations show that a number of eve
above threshold decaying as a power law, i.e., the analog
of the Omori law, is consistent with the simultaneous occ
rence of ~i! a return pdf characterized by a power-la
asymptotic behavior and~ii ! a non-stationary time evolution
of the return pdf whose scale is decaying in time as a po
law. These hypotheses are consistent with recent empi
results. In fact, a return pdf characterized by a power-l
asymptotic behavior has been observed in the price dynam
of several stocks@16,17#. To the best of our knowledge, th
only investigation on the decay of volatility after a crash h
been performed in Ref.@18# where a power-law or power
law log-periodic decay of implied volatility has been o
served in the S&P500 after the 1987 financial crash.
would like to stress that the implied volatiltty is differen
from our g(t) because implied volatiltiy is obtained from
index derivative prices by using the Black and Scholes f
mula instead that directly from data. Moreover, the value
the exponent governing the decay of volatility is different
our study and in Ref.@18#. The analytical considerations de
veloped above indicate that stochastic volatility models
price dynamics are able to describe the behavior of an in
after a crash when they predict the volatility power-law d
cay in time after a crash. Therefore, simple autoregres
models, such as GARCH~1,1! @19# models, are unable to
describe the observed behavior. GARCH processes in t
most compact form cannot show a scale of the stocha
process decaying as a power law after a big event. By a
lytical calculation and performing numerical simulations, w
have shown that these models are characterized by an e
nential decay of the scale of the process@20#.

In order to show that empirical data are consistent w
our description of aftershock periods, we empirically stu
the time evolution of the scale of the process. To this end
using the ordinary least square method, we fit the abso
value of return with the functional formf (t)5c1t2b1c2 in
the 60 days after each considered market crash. We ch
that the relationc1t2b@c2 is verified in the investigated pe
riod. The best estimations ofc1 andc2 are 6.331024 and 2.8
31026 for the 1987 crash, 5.131024 and 4.331025 for the
1997 crash, and 4.431024 and 1.031024 for the 1998 crash,
9-3
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respectively. The timet is expressed in trading day. By usin
the relationr (t)5g(t)r s(t), theb exponent obtained is als
the exponent controlling the scaleg(t). In order to estimate
the a exponent governing the stationary part of the retu
evolution we define a new variabler p(t) obtained dividing
r (t) by the moving average of its absolute value. The av
aging window is set to 500 trading minutes. The quan
r p(t) is a proxy for the stationary returnr s(t). We investi-
gate the asymptotic properties for large absolute value
the stochastic processr p(t) by computing the Hill’s estima-
tor @21# of the process computed over the largest 1% val
of ur p(t)u. To assess the reliability of thea estimate obtained
with this method, we also compute its 95% confidence in
val. The 95% confidence interval is obtained by comput
C95a/Am, whereC95 is the value at which the normal dis
tribution is equal to 0.95 andm is the number of records
located in the distribution tail. With our procedure, we obta
a value of the exponenta which is ranging from 3.18 to
3.67. These values are consistent with the observations
formed by different authors on the power-law behav
governing large absolute returns in stocks and st
indices@16,17#.

The estimates ofa and b values are shown in the righ
part of Table I for all the investigated market crashes. T
last column of the table gives the value of the productab
that is to be compared with the values ofp summarized in
the left part of the table. The agreement is increasingly g
for values ofp obtained for large values of the threshol
This is expected because only for large threshold, the
evant part of the return pdf is well described by a power-l
behavior.

Finally, we investigate the properties ofN(t) computed
for the random variabler p(t). This variable is our proxy for
r s(t) and therefore a linear behavior ofN(t) is expected for
each value of the threshold chosen. From our definition
r p(t), it follows that the mean of the absolute value ofr p(t)
is equal to one. In Fig. 4, we showN(t) for the market crash
of 19 October 1987 when, is ranging from 4 to 13. For al
values of the threshold,N(t) is approximately linear show
ing that r p(t) provides a good proxy forr s(t). Moreover,
starting from Eq.~4!, one can show that the slopeh of N(t)
is proportional to the quantity 12Fs(,). We determineh
with a best linear fit ofN(t) for each value of,. The results
are shown in the inset of Fig. 4. Under the assumption of
~5!, the expected relation betweenh anda is h;,2a. The
inset also shows our best fit ofh with a power-law relation
as a solid line. The best fitting exponent isa53.14 when
,>7. This value ofa is consistent with the value obtaine
with the Hill estimator~see Table I!.
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In conclusion, our results show that time periods of t
order of 60 trading days~approximately 3 months in calenda
time! occurring after a major financial crash can be mode
in terms of a new stylized statistical law. Specifically, t
number of index returns computed at a given time horiz
occurring above a large threshold is well described by
power-law function which is analogous to the Omori law
geophysics.

The presence of a power-law relaxation seems to b
common behavior observed in a wide range of complex s
tems. One possibility for this common occurrence is that
Omori law is a phenomenological manifestation of under
ing common microscopic mechanisms governing the dyna
ics of complex systems after an extreme event. An exam
of such mechanisms has been proposed to model the ma
tization relaxation in spin glasses where it has been sho
that the presence of many metastable states whose lifet
are distributed according to a broad, power law distribut
implies a power-law decay of the magnetization during ag
@2#.
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FIG. 4. Cumulative numberN(t) of the number of timesur p(t)u
is exceeding a threshold,. The data refer to the S&P 500 index ju
after the 1987 crash.N(t) is computed for different values of th
threshold, ranging from 4 to 13. A linear behavior ofN(t) is
observed for all values of,. In the inset, we show the values of th
slope h as a function of, in a log-log plot. These values ar
computed by performing a best linear fitting ofN(t). The continu-
ous line is the best fit ofh(,) with a power-law behavior. The bes
fitting exponent is 3.14.
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